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A polynomial spline of order m (degree m - 1) with knots {giK=l
(0 < gl < g2 < ... < gr < 1) has the form

m-l r

Sex) = L aixi + L Ci(X - gir~-l
i=O i=l

(0.1)

where, as usual, x+ k = x k for x ~ 0, x+ k = °for x < 0, and ai , Ci are real
constants. Fundamental to the study of interpolation and approximation by
splines on the interval [0, 1] (see Section 2) is the kernel K(z, w) defined on
Z X W, where Z and Ware the specific ordered sets (consisting of a set of
integets and points of an open interval)

Z = {x, 0,1, ... , m - 1; x E (0, I)}

and

W = {O, 1,2, ... , m - 1, g; gE (0, I)}.

K(z, w) is defined as follows:

K(x, i) = u;(x) = Xi,

K(x, 0 = (x - g)'~'-\

KU, g) = Dxjef>(x, 0 IX=l

KU, i) = DjUi(X) IX=l .
(0.2)

* Part of the contents of this paper is reviewed in Karlin [4].
t Research supported in part under contract NOO14-67-A-0112-0015 at Stanford Univer­

sity, Stanford, California.
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(Note that in the domain Z the integers are arranged to occur after the x
values, while in W they are placed prior to the gvalues.)l

The kernel K(z, w) has remarkable total positivity properties, elaborated
in Sections 1 and 2 and decisive in the ascertainment of complete criteria
for interpolating arbitrary data at given points by splines with prescribed
knots. These interpolation results, of independent interest, will serve in
determining optimal quadrature formulas under a variety of circumstances.

Theorem 1 of Section 1 will also prove indispensable to our investigations
(Karlin and Karon [6]) of the Birkhoffinterpolation problem (see Schoenberg
[10], Ferguson [2], Atkinson and Sharma [1], and Lorentz and Zeller [9] for
recent contributions concerning this problem).

Furthermore, the total positivity structure of K(z, w) plays a key role in
analyzing best L 2 approximation to functions by splines with variable knots
(see Karlin [5]).

For other purposes it is important to construct the analog of the kernel (0.2)
associated with certain generalized differential operators. To this end, let
{Wi(X)}lm be positive and of class em on [0, 1]. Consider the moth order
differential operator

(0.3)

composed from the first-order differential operators

d 1
(Div)(x) = -d -(-) vex),x WiX

i = 1,2,..., m,

acting on v E em[o, 1]. The solutions of Lmv = 0 analogous to the powers
{Xi}:;'-l are {Ui(X)}:;'-\ where

(see Karlin, [3, p. 27, and Chapter 6]). We let epm(x; g) be the fundamental
solution of Lmv = 0 whose explicit representation is

x ~ g.
(0.5)

1 Observe the difference in notation from Karlin [41; Z and Ware interchanged to conform
with the notation employed in the book by Karlin [31.
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A "generalized spline" associated with the differential operator Lm and
exhibiting knots {g;}r~l takes the form

m-l r

S(x) = L a;u;(x) + L c;tPm(x; g;).2
i=O i=l

(0.6)

(0.7)

The extended form of the kernel (0.2) associated with the differential operator
Lm defined on Z x W becomes

K(x, i) = u;(x),

K(x, 0 = tPm(x; g),

K(j, g) = D,/tPm(x; g) IX~l ,
K(j, i) = Diu;(x) IX~l .

(Here Di = DjDj_1 ... D1 , DO = I = identity operator.) We recover (0.2)
by the specification w1(x) = 1, w;(x) == i-I, 0 ~ x ~ l. All the results
elaborated for the kernel (0.2) persist for the generalized kernel (0.7), mutatis
mutandis. To ease the exposition we will concentrate mainly on the kernel
(0.2) and accordingly deal with the polynomial splines S(x) of (0.1).

The total positivity nature of the kernel (0.7) is vital for deducing fine
properties of the Green's function for the differential operator Lm coupled
with boundary conditions at the end points 0 and 1 of the form (0.8) below.
The determination of the Green's function with the desired properties is
developed in Section 4.

Consider the homogeneous boundary conditions

m-l

f30: L A...D"S(O) = 0,
..=0

m-l

f31 : L B~ ..D"S(l) = 0,
..~O

v = 1, 2, ...,p,

,\ = 1,2,... , q.

(0.8)

A spline of the kind (0.1) fulfilling the boundary conditions f30 n f31 is said
to be of class Y'mAf3o n f31)'

The following requirements are assumed to prevail unless stated otherwise.

POSTULATE I. (i) P + q ~ m.

(ii) The p X m matrix A = II A...( -1)"11 is sign consistent of order p
(SC1J) and has rank p (a matrix U is said to be SC1J if all p X P nonzero
subdeterminants of U have the same sign).

(iii) The q X m matrix B = II B~ .. II is SCq and ofrank q.

2 In Karlin [3] we refer to (0.6) as a Tchebycheffian spline.
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Several concrete illustrations of boundary conditions fulfilling Postulate I
are indicated in the companion paper to this (see also section 3).

In that section the following general interpolation problem is treated. Let
{Xj}l" satisfy 0 < Xl < X2 < ... < x y <1 and let m + r = y + p + q. When
is it possible to interpolate arbitrarily preassigned values {Yih" at the points
{xjh" by a spline of class .'f'mAf:3o n f:3l)? The exact criterion when such an
interpolation is possible is indicated in Theorem 2.

We now fix some notation. If A = Ii A ij II then

A (i~ , i~ , , ~p)
11 ,.12 , ,jp

denotes the minor of A composed of rows and columns of indices

and

respectively. For Zl < Z2 < ... < zp ; WI < W 2 < ... < wp ,

will denote the corresponding Fredholm minor based on the kernel K(z, w).
We will exploit frequently the Sylvester determinant identity which is

quoted here for easy reference:

Let A be a fixed n X n matrix. Let 1 ~ VI < V2 < ... < V p ~ nand
1 ~ 11-1 < 11-2 < ... < I1-p ~ n be two p-tuples of indices to be held fixed.

For every index i (1 ~ i ~ n) not contained in the set V = (VI' V2 , ... , vp )

and every index j (1 ~ j ~ n) not contained in the set 11- = (11-1,11-2'"'' I1-p),
we form

where (k l , k 2 , ... , kp+l) is the set of indices (i, VI , v2 , ... , v p) arranged in
increasing order, and (11 , 12 ,... , Ip+l) is the set of indices (j,l1-l ,11-2 ,... , I1-p)
arranged in increasing order. Then for il < i2 < ... < iq , with each im ¢ v,

and for jl <j2 < ... <jq, with eachjm ¢ 11-, where q ~ n - p, we have

where
(CXl' CX2 , , cxq+ p ) = (iI' i2 , , i q , VI' V 2 , ... , V p ),

(f:3l' f:32 , , f:3qHJ) = (jl ,j2 , ,jq, 11-1,11-2,· .. , I1-p)

are each arranged in natural order.
We will use the above identity mostly for the case q = 2.
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We conclude this introduction with a brief review of the organization of
the paper.

Sections I and 2 are devoted, respectively, to the formulation and demon­
stration of the precise total positivity character of the kernels (0.2) and (0.7)
Section 3 reports complete results concerning unique interpolation by splines
satisfying rather general boundary conditions. Our study unifies, extends,
and refines much of the previous work on this topic. Whereas most related
developments focus on interpolating given data exclusively at the knots for
special classes of boundary constraints, we have described general criteria
on the knots, interpolatory points, and prescription of the boundary con­
ditions for unique interpolation by splines. More specifically, Theorem I
makes it possible to determine at exactly which points the interpolation
problem is "poised." Interpretation of this result for certain physical systems
is indicated in Chapter 10, Section 9 of Karlin [3].

The theorems of Section 4 describe the fine total positivity structure of a
wide class of Green's functions associated with certain n-th order differential
operators and related boundary conditions. Again, Theorem I is the key
to this development.

1. TOTAL POSITIVITY PROPERTIES OF THE KERNEL (0.2)

The principal result of this paper, bearing numerous consequences, is
the following

THEOREM 1. (i) The kernel K(z, w) defined in (0.2) is totally positive
(TP): For any sets {Xt ,iv} and {iv, gt} satisfying

o~A < i2 < ... < ip ~ m - I,

(I.l)

and ,\ + p = a + T, we have

(1.2)

(ii) Strict inequality holds in (1.2) if and only if the indices and variables
obey the follo wing constraints;

(a) When a ~ '\,

fL = 1,2, , a - .1,

v = 1,2, , ,\;
(1.3)
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(b) When a < A,

Xv < gm-a+v,
g" < X a+" ,

KARLIN

v = 1,2, , A,
p, = 1,2, , A-a.

(1.4)

The conditions are to apply only when the subscripts are meaningful. Notice
that a, p ~ m.

Remark 1. Conditions (1.3) and (1.4) have a simple visual interpretation.
In both cases, if there is a gv, m units to the right of an X" in the display in
(1.2), then x" must be less than gv' If there is aJ~ above an iv (case a), then
j" must not exceed iv; if there is an x" above a gv (case b), then x" must be
greater than gv .

Remark 2. Theorem 1 extends to the case where coincident g:s are
permitted (i.e., knots of higher multiplicity) and coincident Xv values occur
(i.e., the prescription of values of the function and some of its higher
derivatives) with the usual convention for evaluating the determinant (1.2)
in these circumstances (see Karlin, [3, pp. 47-48). A slight modification in
the conditions (1.3) and (1.4) must be made when m coincidences occur
in the collections {Xl' X 2 , ... , xA} and/or {gl , g2 ,... , tT}' The precise statement
is as follows.

THEOREM 1'. Instead of the stipulation (1.1) suppose, more generally,

o ~ jl < j2 < ... < jp ~ m - 1,
(1.5)

o < gl ~ g2 ~ ... ~ gT < 1,

restricted so that A+ p = a + T and

(ex) No more than m consecutive x's or g's coincide;

(f3) At most m + 1 of the x's and f s together are equal to a given value.

Then

(i) The kernel K(z, w) of (0.2) is totally positive, i.e., (1.2) holds subject
to (ex) and (f3). (When m consecutive x's (fs) agree the (m - l)-th derivative
in (1.2) is taken as a right (left) derivative.)

(ii) Strict inequality occurs in (1.2) if and only if, when a > A, (1.3)
prevails and, when a < A, (1.4) holds with the two added exceptions:

If T > m and gv+l = gV+2 = ... = gv+m for some v with v + m ~ T, (1.2)
also holds with a strict sign ifgv+l = x a+v . IfA > m and X"+l = X,,+2 = ... =
X,,+m for some p, with p, + m ~ A, (1.2) also holds with a strict sign if
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Remark 3. The assertions of Theorems 1 and l' apply without alteration
to the generalized kernel (0.7) .

The last statement of Theorem l' concerning the exceptional circumstances
of strict inequality in (1.2) with maximal sets of coincidences should be also
appended to Theorem 1.1 of Karlin [3, Chapter 10].

Some special cases of Theorem 1 are worth highlighting.

EXAMPLE I. Suppose A = T = °and, therefore, p = a. Then the require­
ment for strict positivity in (1.2) reduces to

I-' = 1,2,... , a.

EXAMPLE II. Consider the special case where A = T, P = a > 0, and
gi = Xi for all i. Then (1.2) always holds strictly when a < A. When m > a :): A
the condition simply becomes

fJ- = 1,2,... , a - A.

2. PROOF OF THEOREM 1

The proof of Theorem 1 is delicate, relying on the precise total positivity
properties of a restriction of the kernel K(z, w) already established in Karlin,
[3, Chapter 10, Section 2], on several exploitations of the Sylvester
determinant identity, and on a variety of double inductions (forward and
backward).

The proof of part (i) also employs a standard smoothing argument. The
proof of (ii) is accomplished by a consideration of cases, each case being
basic for the others.

LEMMA 1. Part (i) of Theorem 1.

Remark. The proof to be given adapts the arguments of the proof of
Theorem 2.1 in Karlin, Ref [3, Chapter 10].

Proof

Define for € > 0, G,(x, y) = v'2~ € exp [- 2~2 (x - y)2] , °~ x, y < ro

and set z = {x, (0 < x <1) 0,1,... m - I}. Next define

H(Zy)=IG.(X,y) O<z=x<l, O~y<ro,
• , Du"G.(u, y) IU-l , 0 ~ y < ro, z = v, an integer.

G.(x, y) is extended totally positive (ETP) (see Karlin, [3, Chapter 3,
p. 103]); that is,
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for all choices of Xi and YJ in (0, (0) arranged in increasing order. Set

FE(z, w) = rH.(z, y) K(y, w) dy
o

where WE W, Z E Z. From the basic composition formula [3, Chapter 1,
page 17],

F ( Xl , , X1' , 0, 1,..:, s :::-- 1 A)
E q, q + 1, , m - 1, gl, g2 ,..., gr

J...J HE (Xl"'" X1' , 0,..., S - 1) (2.1)
YI,'" , Y1'+s

0<1I1<···<lIp +s<OO

K(YI'''' 'Y1'+S)d dX A A Y ... Y
q, ... , m - 1, gl ,... , gr I 1'+S

where r = p + s - (m - q). In the notation of Karlin, [3, Chapter 1], the
first determinant under the integral sign is

G
E
* (Xl"'" X1' , 1,... , 1 ).

YI,'" , Y1'+S

Since G.(x, y) is ETP, the first determinant under the integral sign is constantly
strictly positive. By virtue of Karlin, [3, Chapter 10, Theorem 2.2], the
second determinant is always nonnegative and is strictly iff:

(a) When °:s;; q :s;; m - 1,

Yv-q < gv < Ym-'Hv , v = 1,2,...,q+p+s-m,

(b) When q = m (no Xi terms appear in the determinant)

v = 1,2,... ,p +s

(Karlin, [3, Chapter 10, Theorem 1.1]).

Clearly, either of these sets in the Y variables has positive (p + s)-dimen­
sional Lebesgue measure. Therefore, the determinant on the left in (2.1)
is strictly positive.

We now appeal to Theorem 3.3 in Chapter 2 of Karlin [3] in order to
confirm that FE(x, w) is strictly totally positive.

If X and yare any real numbers, GE(x, y) approaches the delta function
S(x - y) as E decreases to zero. Therefore,

lim F.(x, w) = K(x, w),
E...O °< X < 1, WE W.
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An easy calculation, using integration by parts, shows that this relation also
holds for F.(z, w), where z is an integer. For example, if°< w < 1,

F.(v, w) = ( DuYG.(u, y) IU=l K(y, w) dy

= ( (-I)Y DyYG.(I, y) K(y, w) dy

= ( G.(I, y) DyYK(y, w) dy + boundary terms.

The exponential decay of G.(x, y) at y = 00 causes the boundary terms at
infinity to vanish. Moreover, elementary properties of the Gaussian kernel
imply that the boundary term at y = ° involving factors of the form
Dy"G.(1, y)!y=o tends to zero as E approaches zero. Similar reasoning covers
the case where w is an integer. Therefore

lim F.(z, w) = K(z, w),
<-.0

ZEZ, WE W.

Since F.(z, w) is STP on Z X W, K(z, w) is totally positive on Z X Wand
the proof of the lemma is complete.

Our next task will be to establish the sufficiency of conditions (1.3) and
(1.4). This is done by examining four cases of different values of A, p, a, and T

(Lemmas 2-6). The necessity of (1.3) and (1.4) will be proved last.

LEMMA 2. Jfjy ~ iy , v = 1, 2, ... ,p, then

Proof Sufficiency is trivial if p = 1. Assume the validity of Lemma 2
whenever jp ~ k; we will prove it to be correct if jp = k + 1.

Observe that, if p = k + 2, then

K (0, 1, , k + 1 ) °
I, I + 1, , 1+ k + I >

when I ? 0, I + k + I ~ m - 1. This fact obtains since {Xi};;'-l forms an
ETP system (Karlin, [3, Chapter 6, Corollary 1.2]). Applying Theorem
3.3, Chapter 2 of [3], as in the proof of part (i), the assertion is established for
p = k + 2.

Therefore, to advance the induction step, it is sufficient to prove the result
for jp = k + 1 and p = p' ~ k + I, assuming it to be true if jp ~ k, or
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if Jl1 = k + 1 and p ~ p' + 1. (Note we are advancing a second backward
induction on the size of the determinantp.) We can also assume that i l1 >k+1
for if i l1 = k + 1, the determinant expanded by the last row yields

K (
Jl ,J2 ,···,Jl1-1, k + 1) = . K (iI ,J2 ,... ,Jl1-1)
., . k + 1 'Y)k+l " • ,11 , 12,..., 'p-1, 11 , 12,..., '11-1

where 'Y)k+l > 0 and the last determinant is positive by the induction hypoth­
esis since Jl1-1 ~ k.

Let i' be the largest nonnegative integer smaller than i l1 ' and not included
in {iv}f', and let j' be the smallest nonnegative integer not exceeding
k + 1and not included in the set {j,.Jt. Such integers exist, for by assumption,
p' ~ k + 1 and i l1 > k + 1. Insert i' and j' into the sets {iv}t and {j,.}t,
respectively, arranged in natural order. It is easy to check that the inequality
Jv ~ ivis satisfied for the expanded sets.

According to Sylvester's determinant identity,

= K (Jl , ,j', ,Jp'-I) K (iI ,..·,Jl1'-I, k + 1) _ K K (2.2)
i1 , , i' , , il1 ,-1 i1 , ..., ill'-1 , il1, 1 2

where each K1 andK2 is nonnegative, by part (i) ofTheorem 1. SinceJl1'_1 :::;; k,
the induction hypothesis implies that the second determinant on the left of
(2.2) is strictly positive. The backward induction on p assures that the first
determinant on the left of (2.2) is strictly positive.

Therefore, if

we infer from the above analysis of (2.2) that -K1K2 > O. As pointed out
previously, this is impossible. Therefore, the claim in Lemma 2 is validated.

LEMMA 3. IfJ", ~ i"" JL = 1,2,... , q, then

K (Jl.' ,J(/.'Jq+l ,...,J(/+r) > O.
'1 , , lq , gl p .. , gr

Proof. The proof proceeds by induction on r, with a second, backward
induction on q. For r = 0, Lemma 2 applies. If q = m - r, the largest
possible value, the determinant becomes

K ( 0,1,... , m - 1 )
i1 , ... , iq , gl ,... , ~r '
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and Theorem 2.2, Chapter lOt of Karlin, [3], affirms that this determinant
is strictly positive whenever ev < 1, v = 1,... , r. To advance the induction,
it is sufficient to prove the result true when r = r' and q = q' ::::; m - r' - 1,
assuming it to be true whenever r ::::; r' - 1, and when r = r' and q ;;::, q' + 1.

Let i' be the largest nonnegative integer less than or equal to m - 1 and
not contained in {iJL and)', the smallest such integer not contained in
{j,Ji'+r'. Since q' + r' ::::; m - 1, such integers exist. If i' is inserted into
{iv} and)' into {j,J in natural order, the enlarged sets continue to satisfy the
requisite conditions of (1.3). According to Sylvester's determinant identity,

K ( i1,···,j',···,iq'+' )
i1 "0" i'"0" iq ' , gl ,... , gr'

= K ( i1, .. ·,j',···,iq'+'-1 ) K ( i1,···,iq'+r' ) - K K
i1 , ... , t, ..., iq ' , e1 ,...,er'-1 i1 , ... , iq , , e1 ,...,er' 12

(2.3)

where K1 and K2 are nonnegative determinants, as in Lemma 2. The backward
induction on q and forward induction on r imply that the first and second
determinants, respectively, on the left in (2.3) are strictly positive. Therefore, if

K ( i1 ,i2 ,· ..,iq'+' ) = 0
i1 "0" iq l

, gl ,... , gr' ,

then -K1K2 > 0, an absurdity. This completes the proof of Lemma 3.

LEMMA 4. If

then

iv::::; i 1J+v, V = 1,2,... ,s,

x" < g,,+m-s-1J , flo = 1,2,... , p,

K (
Xl"'" X1J ,i1 ,..·,is ,...,is+r) 0
. . . t. t. > .

11 , .•. , 'v ,'0" 'jJ+s , ~1 "0" ~T

(2.4)

(2.5)

Proof The proof of the sufficiency of the conditions is by induction on p,
with a backward induction on s + r. The statement is true for p = 0, for
then we are in the case of Lemma 3. If s + r = m, Theorem 2.2, Chapter 10
of Karlin, [3], asserts that the determinant is positive if (2.5) is satisfied;
in this case, iv = v-I, so (2.4) manifestly holds. Hence, the result is
confirmed when r + s = m.

t Theorem 2.2 is stated for the case of distinct Xl , X2 '00" X~ but the proof works as well
for coincident x's.
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To advance the induction step, we need to show that if the result is true
for p <cp' - 1, and for p = p' when r + s = t + 1, then it is true for
p = p' and r + s = t.

Choose j' to be the smallest nonnegative integer less than m not included
in Uv)i ; then if j' is inserted into Uv}i , the expanded set in natural order
and {i,,}i+S will still satisfy (2.4). Choose gr+l > x p so that gr < gr+l < 1.
Then (2.5) is valid for the expanded set of g's.

According to Sylvester's determinant identity,

K (. Xl ,...,' Xp' ,jl ,,,.,j', .. ·,jt ) K (.XI '".: Xp'-l ,A ,.. ·,jt )
'1"'" I p '+8' gl "0" gr, ~r+l 11 "0" ' 11'+S-l, ~1 "00' gr

where K I and K 2 are nonnegative determinants. The determinants on the
left in (2.6) are inferred to be strictly positive by invoking appropriately
the induction hypothesis. Therefore, if the first determinant on the right
were zero, we would have a contradiction.

LEMMA 5. If

then

gv < x q+v, v = 1,2,... , r,

X" < gm+,,-q , P, = 1,2,... , q + r,

(2.7)

(2.8)

Proof The proof proceeds by induction on r, with a second, backward
induction on p. If r = 0, we are in the situation of Lemma 4; the desired
result is achieved. If p = m, apply Theorem 2.2, Chapter 10 of Karlin [3], as
in the proof of Lemma 3, to conclude that the determinant is strictly positive
provided (2.7) and (2.8) prevail. If p = 0 Theorem 2.2 also applies.

Assume the validity of the result when r <c r' - 1, or if r = r' and
p ~ p' + 1. Letj' be any nonnegative integer, at most m - 1, not in {Mr,
and let gr'+p'+l be chosen so that gr'+p' < gr'+p'+l < 1. Then conditions (2.7)
and (2.8) persist for {xvWr' and {g,,}f'+P'+l.

Sylvester's determinant identity yields

K (Xl,''''' X~+r' ,jl ,.",j',,,.,jp') K (~l ,... , .Xq+r'-l ,jl ,... ,jp')
11"'" lq, ~1 , ... , tr'+p'+l 11 "0" lq, tl "0', ~r'+1J'-l

= K (~l ,... , .Xq+r' ,il ,... ,ip') K (~l ,,,,,.Xq+r'-l ,il ,...,j',... ,jp' ) - K IK2
11 "", 'q, tl "0" tr'+p' '1"", lq, tl , ... , gr'+p'-l,tr'+v'+l

(2.9)
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where K1 and K2 are nonnegative determinants, by part (i) of the theorem.
The determinants on the left in (2.9) are both strictly positive, by the induction
hypothesis. Therefore, we infer as before that the first determinant on the
right cannot be zero.

This completes the proof that (1.3) and (1.4) entail that the determinant
in (1.2) is positive.

Proof that conditions (1.3) and (1.4) are necessary for strict inequality in
(1.2). Suppose, contrary to the second condition of (1.3), that

for some t, I ~ t ~ '\.
Then

f' = t, t + 1,... ,'\; v = 1,2,... , m - a + t.

We must have m - a + t ~ I, for otherwise, a ~ m + t, but a ~ m, by
hypothesis. Note that Ui (x), ex = 1,2,... , a, is a solution of y(m> = 0 on
(Xt, 1] (recall that u;{x)~= Xi), as is K(x, gy), v = 1,2,... , m - a, since
gy < Xt for these values of v. Furthermore, these m functions are linearly
independent, for according to the sufficiency of conditions (1.3) and (1.4),

whenever Xt ~ TJl < ... < TJm < 1. Therefore, each of the functions K(x, gy),
v = m - a + 1,... , m - a + t, which is also a solution of y(m> = 0 for
x ~ Xt , can be represented as a linear combination of the functions Ui (x),
ex = 1,2,... , a, and K(x, gy), v = 1,2,... , m - a. The same representation
applies for DxiK(x, gy) IX=I-' j = 0, I, ... , m - I, in terms of the corresponding
derivatives of these functions. It follows in this case, that there are linear
combinations of the first m columns of

which, added to the appropriate columns, will annihilate all elements in
columns m + 1, m + 2,... , m + t except, possibly, those in the first t - I
rows. The resulting determinant has the form

tm-a gm-a+t+l

x t- 1

I
I
I I
I I

-----------~------~------------

10 oJ
I I
I I

10 01
I I
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By a standard argument, we deduce that the t columns corresponding to
gm-a+l , ..• , gm~a+t are linearly dependent, so the determinant is zero.

Suppose next that a > A and jt > iHt for some t, 1 ~ t ~ a-A. Then
jv > i" , v = t, t + 1,... , a - A; JL = 1,2,... , A+ t. We have

KUv, i,,) = (DJvUi)(X) 1"'=1 = 0, V = t, t + 1,..., a - A; JL = 1,2,... , A+ t.

Then the first A+ t columns of the determinant have nonzero elements only
in the first A+ t - 1 rows, and hence are linearly dependent.

To establish the necessity of condition (1.4) it remains to examine the
possibility that a < Aand Xa+t ~ gt for some t, I ~ t ~ A-a. Then

x" ~ gv, JL = 1,2,... , a + t; v = t, t + 1,... , T,

so

K(x", , gv) = 0, JL = 1,2,... , a + t; v = t, t + 1,... , T.

The first a + t rows of the determinant have nonzero elements only in the
first a + t - 1 columns, and hence are linearly dependent.

This completes the proof of Theorem 1.

3. INTERPOLATION BY SPLINES SUBJECT TO BOUNDARY CONDITIONS

Theorem I can be used to solve the following problem: Interpolate data
at the points X = {xv, v = 1,2,... , A, 0 < Xv < I} by polynomials splines
(see (0.1)) of degree m - I with prescribed knots {gvK,

o < gl < g2 < ... < gr < 1,

satisfying the boundary conditions

m-l

(:30: L Av",ljJ(")(O) = 0,
lJ,=o

m-1

(:31 : L Bv",ljJ("l(l) = 0,
,,~O

v = 1,2,...,p,

v = 1,2,... , q,

(3.1)

(3.2)

In other words, we wish to determine coefficients {ai};;,-1 and {Ci}; so that

m-l .,

Sex) = L aixi + L Ci(X - giy~-1
i=O i=l

(3.3)
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satisfies the boundary conditions flo n fll , and

105

S(Xv) = Yv, v = 1,2,..., '\,

where {Yv}i is given. The problem clearly involves solving a system of linear
equations. To guarantee the possibility of unique interpolation for arbitrarily
prescribed data, it is manifestly required that

p + q + ,\ = m + r.

Assume that the matrices II A v" II, II Bv" II in (3.1) and (3.2) satisfy postulate I

THEOREM 2. Let the knots {~v}~ and the points X = {xv}i be given, satis­
fying 0 < ~1 < ~2 < .,. < ~r < I and 0 < Xl < X2 < ... < XA < 1 where
p + q + ,\ = r + m. Unique interpolation at X occurs by a spline Sex)
of class Y'mAflo n fll) provided postulate I holds and then if and only if
o~ i l < i2 < ... < i1' ~ m - 1 and 0 ~jl <j2 < ... <jq ~ m - 1 exist
satisfying

A (.1, ~, ,p. ) =F 0
11 , 12 , , 11'

and B ( .1, ~, ... , q. ) =F 0
11,12 '''',}a

(3.4)

while {xv}i, Uv}f, {i:};n-1', {~v}~ obey the restrictions of Theorem I. (Here
{i:};n-1' denotes the complementary set of indices to {iv}f among the collection
{O, 1,2,... , m - I}.)

It is worh exhibiting some important examples of boundary conditions
flo n /31 fulfilling the conditions of Postulate I and the cases of validity of
Theorem 2 for them. Of frequent interest is the situation of a "full set"
of boundary conditions, i.e., where p + q = m.

EXAMPLE A. q = m - p. If ,\ = q, then the stipulation r + m =

,\ +p + q entails r = ,\ = q. If the boundary conditions obey Postulate I
then unique interpolation is possible for any sets of prescribed points x's
and knots gos satisfying (1.3), which in the case at hand reduces to x" < ~"HJ ,

fl- = 1,2,... ,q.

EXAMPLE B. q = m - p, ,\ > q. Assuming Postulate I holds, unique
interpolation is possible provided only that {~"K and {x,,}i are specified to
satisfy

X" < ~"+1J'

~" < X q+",

fl- = 1,2, ,'\ - p,

fl- = 1,2, , ,\ - q.
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EXAMPLE C. q = m - p, A. < q. Unique interpolation holds for all
choices of the x's and fs provided there exist

°~ i l < i2 < < i p ~ m - 1,

°~Jr <j2 < <jm-p ~ m - 1,

for which

and

A (.I, ...,~) * 0,
Il, .. ·,lp

B (1~ ...,m.- p) * 0,
1I ,·",}m-p

j" ~ iA+" , J.t = 1,2,... , q - A.,

X/L ~ g/L+P iL = 1,... , ,\ - p

where {iI', ... , i;"_p} is the set of complementary indices to {il ,... , ip} in the
set {a, I,... , m - I}.

The next example embraces a further specialization of wide interest.

EXAMPLE D. Let m = 211, P = q = 11. Let f30 n f3l correspond to the
simple boundary conditions S<i1)(0) = S(i2'(0) = ... = S<inl(O) = ° and
S<h'(1) = S(2)(1) = = SUn)(1) = °where°~ il < i2< '" < in ~ 211 - 1
and °~Jr <j2 < <jn ~ 211 - 1. Suppose Xt = gt, t = I,... , A. (A. = r).
Let {iI', ... , in'} denote the complementary indices to {il ,... , in} in {O,I,... 211 -I}.
According to Theorem 2, unique interpolation holds if and only if

J.t = 1,2,... ,11 - r. (3.5)

In particular, ifJr = il = 0,j2 = i2 = l, ... ,.in = in = 11 - I, then unique
interpolation at the knots holds. On the other hand, if.il = il = 11, j2 = i2 =
11 + I, ... ,jn = in = 211 - I, then inspection of (3.5) reveals that unique
interpolation at the knots is possible if and only if r ;? 11 (i.e., the presence of
at least 11 knots).

Proof of Theorem 2. Let Ui(X) = xl, If!m(x; 0 = (x - O~-l. The
boundary conditions and interpolation for zero data lead to the following
set of linear equations:

m-l m-l

L ai L A"vDvu;(O) = 0,
i=O v=O

m-l r

L aiu;(x",) + L Cilf!m(X", ; gi) = 0,
i=O i=l

J.t = 1, 2, ... ,p,

ex = 1,2,... ,'\,

(3.6)

(3.7)

m-l m-I r m-l

L ai L B"vDvui(l) + L Ci L B"vDvlf!m(x; gi) I:l:~l = 0, (3.8)
i=O v=O i=l v=O

J.t = 1,2,... , q.
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In (3.6), use the fact that DVu;(O) = ov;i! (Kronecker delta); then the matrix
of the equations can be written as

AlOO! ... Al.m_l(m - I)! 0 0

Ap.oO! ... Ap.m_l(m - I)! ° °
UO(Xl) Um-l(Xl) CPm(X1 ; gl) CPm(Xl ; gr)

UO(XA) Um-l(XA) CPm(XA ; gl) CPm(XA ; fr)

m-l m-l m-l m-l
I BtvDVuo(1) ... I B1vD"um- 1(1) L BlvD; CPm(l; gl) ... I BlvD; CPm(l; gr)
v=o v=o v=o v=o

m-l m-l m-l m-l
I BqvDvuo(l) ... I BqvDVum_l(l) L BqvD",V CPm(l; gl) ... I BqvD; CPm(l; gr)

t V~O V~O V~O V~O

To find the determinant of this matrix, we invoke the Laplace expansion
by minors on the first p rows. (It is convenient to employ the notation
A = II A/.Iv( -1)V II.) Thereby the determinant is expressed as

(3.9)

where the second determinant in the sum is that drawn from the last q + ,.\
rows, and columns i/, ..., i;,_p, m + 1,... , m + r of the original matrix
(recall that {iv'};n-p is the complementary set to {iJi from {a, I, ... , m - I}).

Note that the last ,.\ + q rows of the original matrix can be written

I
II fA °Am II1III Uj(xi)111::';':J:o II CPm(Xi ; gj)111::l,j~l II.° II B Ilq,m-l II Dvu (1)llm-l II DVm (I' t )llm-l,rq,\ /.IV /.I=l,v~O j 0 Tm ' Sj v=O.j~l

Therefore, by the Cauchy-Binet formula (see, for example Karlin, Ref. [3,
Chapter OJ), we have

x K (~~ '''''.,XA' j: ,..., j~ ). (3.10)
11 , .•. , lm_p' Sl , •.. , Sr
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According to Theorem 1, K(z, w) is totally positive, and hence the last
determinant in (3.10) is always nonnegative. By the hypothesis of Theorem 2,
A is sign-consistent of order p, and B is sign-consistent of order q. Therefore,
all terms in the sum in (3.10) and (3.9) have the same sign, or are zero. By
Theorem 1, the conditions in the hypothesis of Theorem 2 are precisely the
conditions that some term in (3.9) is nonzero. Hence, these are precisely the
conditions under which the matrix of coefficients of the equations (3.6)-(3.8)
has a nonzero determinant. This completes the proof of Theorem 2.

4. TOTAL POSITIVITY PROPERTIES OF GREEN'S FUNCTIONS

OF DIFFERENTIAL OPERATORS WITH BOUNDARY CONDITIONS

Consider a differential operator, acting on functions v of continuity class
cm[o, 1], of the form (0.3), viz.,

d 1
Lmv = DmDm- 1 ... D1v, Div = -d -(-) v, i = 1,2,... , m, (4.1)

x WiX

coupled with the boundary conditions (cf. (0.8))

m-l

~o : L Av.,(D"v)(O) = 0,
,,~O

m-l

~l: L BA.,(D"v)(l) = 0,
,,=0

Jl, = 1,...,p,

,\ = 1, ..., m - p,

(4.2)

where, in this general setting, DO = I, D" = D"D"_l ... D1 , Jl, = 1,2,... , m - 1.
The functions Wi(X) are prescribed as in (0.3). A natural basic set of

solutions of Lmy = 0 comprise {Ui(X)}:Ol defined in (0.4) and the funda­
mental solution is q,(x; g) = q,m(x; g), whose explicit expression is exhibited
in (0.5).

The boundary conditions ~o n ~l are assumed to be of the type fulfilling
Postulate 1. Thus

(a) A = II Avi -1)1' II is sign-consistent of order p (SC21) and of rank p;

(b) B = II BA" II is SCq and of rank q.

We further assume that the only solution ofLmv = 0 satisfying ~ = ~o n ~l

is the trivial solution (see Theorem 3 below). This fact guarantees the existence
of a Green's function G(x, g) with the properties that Lmv = f, for f
continuous a suitable f, can be uniquely solved with v E~, the solution
admitting the integral representation

v(x) = J: G(x, g)f(g) df
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The Green's function G(x, g) displays the following characteristic properties:

(i) G(x, g) is Cm-2 on the unit square 0 < x, g< 1 and Cm in the
regions 0 < x < g< 1 and 0 < g< x < 1.

(ii) L~)G(x, g) = 0 (0 < x < g) L~)G(x, g) = 0 (g < x < 1).

(iii) For each g, G(x, g) satisfies /3 = /30 n /31 .
(iv) G displays the characteristic jump discontinuity in its (m - l)-th

derivative. Specifically,

1-- [D(m-lJG(x' x-) - D(m-lG(x' x+)] = 1.
wm(x) '" ' '" '

Karon [7], adapting a method of the author [3, Chapter 10, Section 6],
established that G(x, g) is a sign-regular kernel and ascertained conditions
for the nonvanishing of the determinants

(4.3)

We shall obtain this result as a by-product of Theorem 1; in fact, we can
determine the actual sign of (4.3), which is not accessible by the previous
methods.

Proceeding to this task, let A(l), A(2J, ... , A(P), B(l), B(2), ... , B(qJ, q = m - p,

denote the row vectors of the matrices A = II Av" II and B = II BioI' II, re­
spectively. Introduce the vectors {uti)} defined in component form to be

and similarly define

i = 0, 1,... , m - 1.

Also, let for 0 < g< 1

cpcg) = (¢>(o; 0, D.,1cP(O; 0, , D':-l¢>(O; 0) = 0 (the zero vector),

cp(g) = (cPO; 0, Dr/cPO; g), , D,:-lcP(l; g».

(Here D~) signifies that the differential operation D(i) is performed with
respect to the variable x.) Let (Ak. U(k» denote the inner product of the
indicated vectors. Finally, let L1 denote the cofactor of cP(x; g) in the deter­
minant on the right of (4.4) below.
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An explicit representation of Green's function in terms of {Ui(X)}:OI
and ep(x; g) is readily verified to be

(All), u(O») (A(I), u(1») (A(I), Ulm- I») (A(l), <pW)

(A (2) , u(O») (A (2), u(l)) (Al2), u(m-I») (A (2), <p(g))

G(x, g) = I (A(P), u(O») (A (P), UlI») (A(P), Ulm- I») (A(P), <p(g))

wm(g)Ll (BlI), fi(O») (B(I), fi(I») (B(1), film-I») (BlI), cp(g))

(B(q), fi(O») (B(q), fi(1») (B(q), film-I») (B(q), cpW)

UO(X) UI(X) Um-I(X) ep(x; g)

(4.4)

An application of the Sylvester determinant identity produces the formula

G (Xl' X2 ,... , Xr) = rID
gI' g2 ,..., gr [ni=IW(gi)] Ll

where

(A (1), u(O») (A (l), u(m-I») (A (1), <P(gI)) (A (l), <p(gr))

(A (P), u(O») (A(P), u(m-I») (A(P), <P(gI)) (A(p), <p(gr))

(B(1), fi(O») (B(1), film-I)) (BlI), CP(gI)) (B(l), cp(gr))
D=

(B(q), fi lO») (B(q), film-I») (B(q), CP(gI)) (B(q), cp(gr))

UO(XI) Um-I(XI) ep(XI ; gI) ep(XI ; gr)

UO(Xr) Um-I(Xr) ep(Xr ; gI) ep(Xr ; gr)

Expanding Ll as in the proof of Theorem 2 produces

(4.5)

where {i,..'}r- p are the complementary indices to {i,,}r. Inspection of the
expression (4.5) and reference to Theorem 1 reveal the following criteria for
the existence of a Green's function.
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THEOREM 3. The differential operator L m in (4.1) with boundary conditions
(4.2) subject to Postulate I possesses a Green's function iff Ll * 0 or,
equivalently, iff there exist sets of indices {i,Ji and Uv}i (q = m - p,
o ~jl <j2 < .. , <jq ~ m - 1) such that

A ( 1,2'00" P ) -I- 0 B ( 1,2"00' q ) -I- 0 d' <::., ( 1 2 ).. . -r-, .. . -r- , an j""",, I" I-' = , '00" q ,
11 ,12 '00" I p JI ,12 ,oo.,jq

where {i,,'}j are the complementary indices to {i,,}i in {O, 1'00" m - I}.

The statement of Theorem 3 formalizes the assumption concerning the
existence of a Green's function made at the start of this section.

We next evaluate the determinant D. Permuting the rows involving the
vectors {B(i)} to the bottom, expanding again as in the proof of Theorem 2,
and combining with (4.5), we obtain

" B(I,2,00·,q)K(A,00.,jq)]xL".. . . , ., .
j <j <00'<1' JI,12,· .. ,jq 11 ,00.,lm_ p1 2 q

(4.6)

The sign-regularity properties of G(x, g) can be read off from this formula,
in view of the exact delineation of the total positivity character of K(z, w)
in Theorem 1. We sum up in the following theorem. (For obvious reasons
it is convenient to multiply the operator L m by the constant factor (_l)m-p.)

THEOREM 4. Consider the differential operator (-l)m-PLm with boundary
conditions (4.2) of the type fulfilling Postulate 1. Assume the associated Green's
function M(x, g) exists (or, equivalently, the conditions of Theorem 3 hold).
Then

(i.e., M(x, 0 is TP) and strict inequality holds ifand only if

I-' = 1,2'00" r - q,

I-' = 1,2'00" r - p.
(4.8)
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Some special cases of Theorem 4 with distinct x's and fs are stated in
Krein [8].

Applications of Theorem 4 to the oscillation theory of solutions of
differential operators of type (4.1) will be presented elsewhere. Consult
also Karlin, Ref. [3, Chapter 10, Section 6], for further discussion on the
significance and relevance of this theorem to vibrating coupled mechanical
systems.
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